Displaying 1 - 10 of 12
Dawn's picture

Sinus Tachycardia

This ECG is from a collection of tracings that, sadly, have no patient information.  It is interesting nonetheless, and we would love to hear your thoughts on it.

ECG Findings:  The rhythm is sinus tachycardia, at a rate of 120 bpm.  The QRS is narrow at .08 seconds (82 ms).  While the PR interval is normal, at .14 seconds (140 ms), the PR segment is very short. The PR segment is the line between the end of the P wave to the beginning of the QRS complex.  This can indicate the presence of an accessory pathway that bypasses the AV node, or of faster conduction within the AV node. The P waves in the inferior leads II, III, and aVF barely meet voltage criteria for right atrial enlargement,  but the P waves in V1 do not have the usual prominent positive deflection one would expect with RAE.  Even with the short PR segment, the segment appears to be elevated in the inferior leads, without any reciprocal PR depression.  The PR segment is where atrial repolarization occurs (the atrial “T” wave). There are many conditions that can elevate or depress PR segments, and without a patient story here, we can’t guess at the cause.  If you are an instructor, this would be a good ECG to illustrate why we use the TP segment to determine the “isoelectric line”, rather than the PR segment.

The inferior ST segments are very flat, which is not normal, while the rest of the ST segments display the normal concave up “smile” shape.  Serial ECGs would no doubt be helpful here, to recognize changes in the ST segments.

Bottom Line:  It would be much easier to make a determination about the causes of these subtle changes if we had patient information.  However, this ECG is still valuable as an exercise in measuring intervals, and as an example of short PR segment. It is also a good example of a fairly fast sinus tachycardia.  We would love to hear our visitors’ thoughts on this tracing.

Dawn's picture

Tachycardia In An Unresponsive Patient

 The Patient     This ECG was obtained from a 28-year-old woman who was found in her home, unresponsive.  She was hypotensive at 99/35.  No one was available to provide information about past medical history or the onset of this event.

Before you read my comments, pause to look at the ECG and see what YOU think.  We would welcome comments below from all our members!

The ECG     This ECG is quite challenging, as it illustrates the helpfulness of ECG changes in patient diagnosis, and also points out how important clinical correlation is when the ECG suggests multiple different problems. Forgive me in advance, but there is a lot to say about this ECG.

The heart rate is 148 bpm, and the rhythm is regular, although not perfectly. P waves are not seen, even though the ECG machine gives a P wave axis and PR interval measurement. The rate is fast enough to bury the P waves in the preceding T waves, especially if there is first-degree AV block. Differential dx: sinus tachycardia, PSVT, atrial flutter. The very slight irregularity points more towards sinus tachycardia.  The rate of nearly 150 suggests atrial flutter with 2:1 conduction, but the only lead that looks remotely like it has flutter waves is V2. The lack of an onset or offset of the rhythm makes it difficult to diagnose PSVT with any certainty.

Dawn's picture

Syncope and tachycardia

The patient:  This ECG is taken from a 55-year-old man whose wife called 911 because he had a syncopal episode.  When the paramedics arrived, he was conscious and alert, and denied any symptoms.  He gave a history of "cardiac", diabetes, and opiate abuse.  We do not know the nature of his cardiac history or his medications.  

It is difficult to pinpoint a definite diagnosis with this lack of information and a clearly abnormal ECG.  We will limit our discussion to listing the abnormalities seen:

The ECG rhythm:  There is a fast, regular rhythm that is supraventricular in origin (there are P waves).  When a supraventricular rhythm has a rate of about 150 per minute, we should ALWAYS consider ATRIAL FLUTTER WITH 2:1 CONDUCTION.  Atrial flutter produces P waves (flutter waves) at approximately 250-350 per minute.  The normal AV node is able to conduct half of these, at a rate of about 150 per minute. Atrial flutter with 2:1 conduction is the most common presentation of new-onset atrial flutter.  It is often missed by people who expect to see several flutter waves in a row, producing the "sawtooth pattern".  That being said, atrial flutter is usually discernable in at least a few leads if it is present.  We do not see any signs of flutter waves in this ECG.

That leaves us with a differential diagnosis of sinus tachycardia vs. one of the regular supraventricular tachycardias like reentrant tachycardias or atrial tachycardia.  Sinus tachycardia can be recognized by several features. If we are fortunate enough to witness the onset or offset of the fast rhythm, will will recognize sinus tachycardia by a "warm up" or gradual speeding up of the rate, and a "cool down", or gradual slowing.  On the other hand, SVTs often have abrupt onset and offset.  Sinus tachycardia often has a very obvious cause, such as hypovolemia, fever, pain, anxiety, vigorous exercise, or hypoxia.  Sinus tachycardia usually has a distinct, upright P wave in Lead II, and a clearly-seen, often negative, P wave in Lead V1.  This ECG does not show the onset of the tachycardia, and is not long enough to evaluate for rate changes. Lead II appears to have upright P waves on the downslope of the previous T waves. V1 has deeply negative P waves, and V4 has the most clearly-seen P waves.  Without being positive, this looks more like sinus tachycardia than a reentrant tachycardia.  It would help to know more about the patient's condition.

Dawn's picture

Paroxysmal Supraventricular Tachycardia

This ECG is from a man in his 60's who is experiencing chest discomfort and palpitations.  The onset of the rapid heart rate and the symptoms was sudden, while he was at rest.  The rate did not slow when he was placed on oxygen, given IV fluids, and rested further. The rate is 177 / min.  

The rhythm is AV nodal reentry tachycardia (AVNRT), which is one of the rhythms that falls into the category of paroxysmal supraventricular tachycardia (PSVT).We can see signs of retrograde P waves in some leads (II, III, aVF, V1).  AVNRT is caused by a reentry circuit in the AV node.

 

Some instructors teach students that sinus tach is approximately 100-150 per minute, and atrial tach is usually 150-250 per minute.  If students only learn about differentiating these two rhythms by the rate difference, it will cause later problems.  Of course, there is actually an overlap in rates between the two rhythms.  For example, a febrile, dehydrated infant could easily reach this rate and be in sinus rhythm.  A young, healthy person on a treadmill could, too.  Clues to the ectopic origin of this rhythm are:  sudden onset (unfortunately, not witnessed here), regular rhythm with unwaivering rate, and the patient's situation (symptoms while at rest, no obvious reason for sinus tach).  Of course, we need to teach to the level of our students' abilities.  Consider whether they just memorizing rhythms criteria now, or are they learning about re-entry?

Dawn's picture

Ventricular Tachycardia

This wide-complex tachycardia is ventricular tachycardia.  Along with the wide QRS and the fast rate, features which favor a diagnosis of VT over BBB include:  backwards (extreme right) QRS axis, negative QRS in V6, and an apparently monophasic QRS in V1, as opposed to the rSR' pattern of right bundle branch block. 
Remember, ALL wide-QRS tachycardias should be treated as V Tach until proven otherwise, as it is a life-threatening arrhythmia.  Factors which lower cardiac output during V Tach include:  Fast rate, wide QRS, and lack of P wave preceding the QRS.  The sudden severe lowering of perfusion that usually accompanies V Tach can lead to rapid deterioraton and ventricular fibrillation.

For discussions by Jason Roediger (ECG GURU extroidonairre) on recognizing ventricular tachycardia, go to this LINK, and this LINK.

Dawn's picture

Anti-tachycardia Function of ICD

This ECG was donated to the ECG Guru by Brent Dubois, and was originally published on the FaceBook page, Paramedic Tips & Tricks.  We published it to this site three years ago, but believe it should be shown again, as it is somewhat rare to catch a good-quality 12-Lead ECG of an implanted cardioverter-defibrillator pacemaer using overdrive pacing to terminate a ventricular tachycardia.  Most of our examples have been rhythm strips.

In this strip, we see the patient in ventricular tachycardia (V tach) at a rate of about 190 / minute.  The ICD, in response to the fast rate, delivers a short burst of even faster paced beats.  The physological rule in the heart is, "the fastest pacemaker controls the heart".  Once the pacemaker has terminated the V tach, it paces at a much slower rate.  It is pacing the atria, and the conduction system is intact, allowing the impulse to travel normally through the ventricles.  If the sinus node is able to "outpace" the slower paced rhythm, the heart will resume a sinus rhythm.

This is called "overdrive pacing" and is done automatically by an ICD that is programmed to do so.  Overdrive pacing can also be accomplished by a temporary transvenous pacer or transcutaneous pacemaker.  

Dawn's picture

Right Ventricular Outflow Tract Tachycardia (RVOT)

This ECG was taken from a patient who was complaining of palpitations and tachycardia, but who was hemodynamically stable, with no history of heart disease.  It is an example of RIGHT VENTRICULAR OUTFLOW TRACT TACHYCARDIA, a type of idiopathic ventricular tachycardia.  The ECG signs of RVOT are:  wide QRS complex, left bundle branch block pattern (QRS negative in V1 and positive in Leads I and V6), heart rate over 100 bpm, rightward or inferior axis (LBBB usually has a normal to leftward axis), AV dissociation.

RVOT accounts for about 10% of all ventricular tachycardias, and 70% of idiopathic VT.  It is most often found in structurally normal hearts, but it may occur in patients with arrhythmogenic right ventricular dysplasia.  For more on RVOT, read Life In the Fast Lane.

RVOT tachycardia sometimes converts with adenosine.  The patient in this example converted after being administered amiodarone.

Dawn's picture

Supraventricular Tachycardia

This ECG shows AV nodal reentrant tachycardia in an elderly man.  Clinical information is not available.  AVNRT is the rhythm most often associated with the term, "supraventricular tachycardia".

Although we can't see the beginning of this rhythm, one of the identifying features of SVT is an abrupt (paroxysmal) onset.  In patients with AVNRT, there are two pathways in the AV node, a pathway with fast conduction and a long refractory period, and a pathway with slow conduction and a short refractory period.  Normal sinus impulses travel down the fast pathway and into the ventricles, but also start up the slow pathway in a retrograde direction. The retrograde impulse and the normal impulse traveling down the slow pathway collide, cancelling each other out.  If a PAC occurs, it will travel down the slow pathway while the fast pathway is still refractory.  By the time the impulse reaches the end of the slow pathway, it finds the fast pathway no longer refractory, and travels back up to the atria.  This forms a circular movement (circus movement) of the impulse, and it repeats itself rapidly until interrupted.  When each impulse reaches the ventricles, it travels into the interventricular conduction system and causes ventricular depolarization and contraction, usually at a rate of 140 - 250+.  Unlike sinus tachycardia, AVNRT does not adjust its rate according to the needs or activity of the patient.

There are many forms of supraventricular tachycardia, and they are not always easy to differentiate based on ECG criteria alone.  AVNRT of the type described above is the most common PSVT in structurally normal hearts.  For more information on supraventricular tachycardia, go to Life in the Fast Lane.  For a discussion on clinical management, we recommend Dr. Grauer's ECG Video 6 - Rhythm Mgmt-Part 3.

Dawn's picture

ECG Basics: Paroxysmal Supraventricular Tachycardia

This two-lead rhythm strip clearly shows the transition from normal sinus rhythm to a paroxysmal supraventricular rhythm.  In this case, the arrhythmia is AV nodal reentrant tachycardia, AVNRT.  The rate of the first rhythm, NSR, is around 75 per minute.  The fourth beat on the strip is a PAC which initiates the paroxysm of tachycardia lasting 12 beats.  The arrhythmia terminates spontaneously at that point.  The tachycardia rate is about 150/min.

The topic of supraventricular tachycardias can be a very complex one to teach.  For an excellent example of a concise lesson geared toward Primary Practice physicians, go to Dr. Grauer's VIDEO - Part III of his Arrhythmia series.

To cover the important points for the beginner-level student:

  *  It can be difficult to determine a rhythm is SVT if the rhythm is near 150 bpm and you DON'T see the beginning or end of the arrhythmia.  If the onset (or offset) is sudden, then this is not a sinus rhythm.  The sinus node speeds and slows more gradually - it doesn't change rates in one heartbeat.  This strip has an excellent view of BOTH the onset and the offset.

  *  The faster the rate, the more likely we are looking at a PSVT rather than sinus rhythm.  If a sinus tachycardia exists, we can almost ALWAYS see the reason for it in the patient's clinical situation.  We may see fever, dehydration, bleeding, fear, pain, exercise.  Therefore, a patient at rest with a rate of 150 would be suspect for PSVT.  A patient on a treadmill for 5 minutes would be considered to have a sinus rhythm.

  *  Any patient with a rate around 150 per minute should be evaluated for ATRIAL FLUTTER with 2:1 conduction.  Atrial flutter often conducts at that ratio, because a rate of 150 is fairly easy for the AV node to conduct, whereas the instrinsic rate of atrial flutter (250-350) is not.  A 12-lead ECG makes it easier to search for tell-tale flutter waves.

Dawn's picture

Atrial Flutter With Variable Conduction

This ECG provides an example of atrial flutter with variable conduction.  There are two distinct R - R intervals, making this a somewhat regularly-irregular  rhythm, as opposed to the irregular irregularity of atrial fibrillation.  The flutter waves (P waves) are very easy to see in most leads, but not in all.  If you are teaching students who are making the transition from reading monitors and rhythm strips to 12-lead ECGs, this is a great ECG to illustrate for them how the more leads you have, the more you will see.  The flutter waves are invisible in Lead I and, to the untrained eye, they may be hard to see in the precordial leads.  The four channels on this ECG are run simultaneously, so if  P waves or flutter waves are visible in one lead, they are also present in all leads that line up vertically with that one.  In other words, the Lead II rhythm strip at the bottom confirms that flutter waves exist across the entire ECG.

The R - R intervals in this ECG reflect alternating 2:1 and 4:1 conduction.  There are a couple of times when the 4:1 ratio repeats itself without alternating.  Often, the length of these varying R - R intervals will be multiples of each other, or have a common denominator.  These do not appear to, and may reflect the fact that, when R to P intervals lengthen, R to R intervals sometimes shorten.  In other words, the PR intervals, which are difficult to measure in atrial flutter, may be changing.  I would invite my colleagues with more expertise in this area to comment below.

There are no blatant ST segment abnormalities here, but ST segments can be very difficult to assess in atrial flutter because of the flutter waves.  We do not have clinical data, other than this is a 62-year-old man.

Pages

All our content is FREE & COPYRIGHT FREE for non-commercial use

Please be courteous and leave any watermark or author attribution on content you reproduce.