ECG Guru - Instructor Resources

A gathering place for instructors of ECG and cardiac topics.

       

Subscribe to me on YouTube

Left axis deviation

Left Bundle Branch Block

Tue, 01/17/2017 - 18:36 -- Dawn

This ECG was taken from an unknown patient.  It shows sinus tachycardia with left bundle branch block. The ECG criteria for left bundle branch block are: 

* Wide QRS (.12 seconds or greater)

* Negative QRS deflection in V1

* Positive QRS in Leads I and V6 

* Supraventricular rhythm

In addition to these criteria, left bundle branch block will cause repolarization abnormalities.  This is because depolarization is altered through the left ventricle, which causes repolarization to also be altered.  Instead of the electrical impulse traveling down the left bundle branch to depolarize the left ventricle, it depolarizes the right ventricle first, then spreads cell-to-cell across the larger left ventricle. The ST and T wave changes caused by left bundle branch block are normally “discordant”.  That is, the ST segment will be elevated in leads with negative QRS complexes, and depressed in leads with positive QRS complexes.  This elevation and depression of the ST segment may “imitate” the changes caused by acute myocardial infarction.  They may also work to conceal M.I. changes, as we may not recognize  STEMI as we attribute the ST changes to the left bundle branch block itself. 

For more on determining the presence of acute M.I. when the patient has left bundle branch block, check out these links:  ECG Guru, LBBB with AMI; Life in the Fast Lane, Sgarbossa CriteriaEMS 12-Lead, Sgarbossa Criteria;  Dr. Smith's Modified Sgarbossa Criteria. 

Previous Inferior Wall M.I. and Left Axis Deviaton

Fri, 01/17/2014 - 21:39 -- Dawn

If you are teaching frontal plane axis to your students, you will need to teach them HOW to determine the axis - usually beginning with the QRS axis and then adding the P and T waves.  But, you also need to teach them WHY we measure axis, to provide relevance to something that may seem challenging to beginners.  There are many ECG interpretations that rely heavily or are dependent upon the determination of the axis.  

This ECG is a great example of left axis deviation.  The cause is readily discernible, if your students know the ECG signs of myocardial infarction. This patient had an inferior wall M.I. in the distant past, and now has pathological Q waves in Leads II, III, and aVF.  Pathological Q waves in related leads in a patient with history of M.I. are a sign of necrosis, or permanent damage, in that part of the heart.  The inferior wall has lost an extensive amount of tissue, which is now electrically inactive as well as mechanically inactive.  (You may also find it helpful to show students videos of ventriculograms showing normal LV function and hypokinesis of the LV due to M.I.)  Because of the loss of electrical activity in the inferior wall, the "mean" electrical direction (or axis) is AWAY from the inferior wall.  That is, the electricity travels AWAY from II, III, and aVF and TOWARD I and aVL.

Many of the blogs and webpages listed in our "Favorites" address the subject of axis determination.  Here is one from Cardio Rhythms Online if you would like a review.

 

 

 

jer5150's picture

Jason's Blog: ECG Challenge of the Week for July 8-15. Which lead do both of these ECGs share a “common-thread”?

 

Two more ECGs classified under the general heading:  “Tracing suggestive of   ____ ”.  I  like ECGs that strongly favor a very specific clinical disorder.

jer5150's picture

Jason's Blog: ECG Challenge of the Week for June 10-17. Why did the ventricular rate abruptly decrease?

 

From June 10, 2012:   As is the case with all practical blogs, I’m encouraging ECG Guru members to engage in active group participation.  Share your thoughts, observations, impressions, findings, and interpretations.  Feel free to compare notes with one another and pick each other’s brains.

All our content is FREE & COPYRIGHT FREE for non-commercial use

Please be courteous and leave any watermark or author attribution on content you reproduce.

Subscribe to RSS - Left axis deviation