Displaying 1 - 10 of 19
Dr A Röschl's picture

Second-degree AV Block with Left Bundle Branch Block & Lead Reversal

This ECG shows second-degree AV block, Mobitz Type II and an interventricular conduction delay, probably left bundle branch block. The QRS width is about 130 ms, or .13 seconds.

Dr A Röschl's picture

Second degree AVB Mobitz Type II

This ECG is from an 80-year-old lady who has collapsed or had sycopal episodes several times. The ECG comes from a Holter monitor. She has arterial hypertension and coronary artery disease. The ECG shows a second-degree, Mobitz Type II AV block. In both types of AVB, the PP intervals are usually the same.

Dawn's picture

Ask The Expert

Today's Expert is Dr. Jerry Jones, MD, FACEP, FAAEM                                                                                                                                                             

 Jerry W. Jones, MD FACEP FAAEM is a diplomate of the American Board of Emergency Medicine who has practiced internal medicine and emergency medicine for 35 years.    

Dr. Jones has been on the teaching faculties of the University of Oklahoma and The University of Texas Medical Branch in Galveston. He is a published author who has also been featured in the New York Times and the Annals of Emergency Medicine for his work in the developing field of telemedicine. He is also a Fellow of the American College of Emergency Physicians and a Fellow of the American Academy of Emergency Medicine and, in addition, a member of the European Society of Emergency Medicine. 

 Dr. Jones is the CEO of Medicus of Houston and the principal instructor for the Advanced ECG Interpretation Boot Camp and the Advanced Dysrhythmia Boot Camp.                                                                                                                                                                                                                                                                                                                    

 

Question:  I teach beginner students. How can I explain the complex subject of “AV Blocks”?  I don’t want to teach incorrect information while trying to simplify the subject.

 

 Answer:  AV Blocks Article By Dr. Jerry Jones  (click link)


Dawn's picture

ECG Basics: Second-degree AV Block, Type II

This rhythm strip was obtained from a man who was suffering an acute inferior wall M.I.  There are ST elevation and hyperacute T waves.  The rhythm is SINUS ARRHYTHMIA WITH SECOND-DEGREE AV BLOCK, TYPE II.    There is also first-degree AV block.

There are more P waves than QRS complexes, with a 3:2 ratio.  The atrial rate varies between 55 -68 beats per minute.  The sinus rate speeds slightly after the dropped QRS in each group. The ventricular rate is about 40 bpm, with grouped beating. (Regularly irregular.)

The PR intervals are steady at 226 ms (slightly prolonged).

Dawn's picture

Second-degree AV Block, Type II

The patient:  Unfortunately, we no longer have information on this patient, other than the fact that she went to the OR for a permanent pacemaker implantation.

The ECG:  The atrial rate (P waves) is 99 beats per minute. The P waves are regular and all alike (NSR). The ventricular rate (QRS complexes) is 33 bpm, and the QRS complexes are regular and all alike. The PR intervals, when A-V conduction occurs, are 162 ms (.16 seconds) and all alike. The QRS complexes are wide, at 122 ms (.12 seconds). There is right bundle branch block, but no left hemiblock, as the frontal plane axis is normal. The QTc is prolonged at 549 ms.  Many ST segments on this ECG have a “flat” appearance, rather than the normal concave up shape.

The failure of 2 out of every 3 P waves to conduct indicates a second-degree AV block. Type I is a block of the AV node, with progressive prolongation of the PR interval until ONE P wave fails to conduct. Type II AV block is a block of the intraventricular conduction system. Clues that a second-degree AV block is Type II include:

·        The PR intervals are all alike.

·        More than one consecutive P wave is not conducted.

·        A P wave that is NOT in the refractory period of the preceding beat is not conducted.

Dawn's picture

High-grade AV Block With Profound Bradycardia

If you are an ECG instructor, you probably carefully choose ECGs to illustrate the topic you are teaching. One of the reasons for the existence of the ECG Guru website is our desire to provide lots of such illustrations for you to choose from.

Sometimes, though, an ECG does not clearly illustrate one specific dysrhythmia well, because the interpretation of the ECG depends on so many other factors.  In order to get it “right”, we would need to know information about the patient’s history, presentation, lab results, or previous ECGs. We might need to see the ECG done immediately before or after the one we are looking at.  Some ECG findings must ultimately be confirmed by an electrophysiology study before we can know for sure what is going on.

For those of us who are “ECG nerds”, it can be fun to debate our opinions and even more fun to hear from wiser, more advanced practitioners about their interpretations.

My belief, as a clinical instructor, is that we must teach strategies for treating the patient who has a “controversial” ECG that take into account the level of the practitioner, the care setting, and the patient’s hemodynamic status.  In some settings, it might be absolutely forbidden for a first-responder to cardiovert atrial fibrillation, for example.  But atrial fib is routinely cardioverted under controlled conditions in hospitals.  The general rule followed by emergency providers that “all wide-complex tachycardias are v tach until proven otherwise” has no doubt prevented deaths in situations where care providers did not agree on the origin of the tachycardia.

The ECG:    We do not have much patient information to go with this ECG, just that it is from a 71-year-old woman who developed severe hypotension and lost consciousness, but was revived with transcutaneous pacing.   Here is what we do know about this ECG:

·        There are regular P waves, at a rate of about 39 bpm (sinus bradycardia).

Dawn's picture

AV Block of Undetermined Type

This strip was obtained from a woman who presented to her doctor’s office with hypertension. While there is some artifact in the baseline, it is possible to determine the presence of P waves, thanks in part to having two leads to assess.  We have provided an unmarked version of the strip for you to use, and also a marked version for the sake of this discussion.

The underlying rhythm is sinus bradycardia, at about 60 bpm, but with some slight variation in the P to P intervals (about 920 ms to 1040 ms). Because of the artifact, it is difficult to determine the exact P to P intervals, and the exact morphology of the P waves. So, we can’t say for sure that the P waves are all alike.

The AV block occurs at a 3:1 ratio.  That is, for every three P waves, one is conducted and produces a QRS complex.  When the P waves are not conducted, an escape rhythm occurs.

The escape rhythm occurs at an escape interval of about 1720 ms.  In other words, when a QRS does not occur by that time, the escape beat is produced.  It appears to be from the AV junction, in spite of the slow rate, because the escape QRSs look like the sinus conducted QRSs.  Both sinus and junctional rhythms are conducted along the bundle branches and produce the same QRS morphology.  The QRS complexes are approximately .08-.10 seconds wide.  Note that QRS complexes numbered 3, 5, and 7 have a P wave fused to the beginning of the QRS, making the QRS look wide when it is not.   A junctional escape rhythm results from AV block in the AV node, as the junction is the first available pacemaker below the AVN. 

This patient was scheduled for a treadmill stress test in her doctor’s office, which was cancelled. She had no cardiac symptoms at the time of the ECG, except the above-noted hypertension.  Unexplained bradycardia, especially when accompanied by AV node blocks, should trigger an assessment for inferior wall M.I., since the inferior wall of the LV shares a blood supply with the SA and AV nodes in the majority of people.

Dawn's picture

Second-degree AV Block, Type II?

This ECG is taken from an elderly woman who complains of feeling weak and tired. We have no other clinical information, unfortunately.

There is an obvious bradycardia, with more P waves than QRS complexes.  Here is what we see:

*  Atrial rate is around 115/min. and P waves are regular and all alike.

*  Ventricular rate is around 35/min. and QRS complexes are regular and all alike.

*  PR intervals, when they occur, are all the same at 162 ms.

*  QRS duration is wide at 122 ms.

*  QTc interval is prolonged at 549 ms.

What does this mean?  There is sinus tachycardia with second-degree AV block because the atrial rate is over 100/min, but not all P waves are conducted.  The AV block looks like a Type II (Mobitz II) block because the PR intervals are all the same.  This is a reliable indicator of conduction. (Not third-degree AVB).  The wide QRS complexes are due to right bundle branch block.  The ECG signs of RBBB are: 1) wide QRS; 2) supraventricular rhythm; and 3) rSR’ pattern in V1 and Rs, with a wide little s wave, in Leads I and V6.

Dawn's picture

Left Bundle Branch Block With Second-Degree AV Block, Type II

 This ECG was obtained from an 84-year-old woman who was scheduled for surgery.  When the anesthesiologist did this ECG, the surgery was cancelled. It is a very good example of fascicular-level blocks. 

The underlying rhythm is a regular sinus rhythm at about 95 bpm.  There are some non-conducted P waves which are part of the sinus rhythm (not premature beats).  When the P waves DO conduct, the PR interval is steady at about .15 seconds (148 ms).

In addition, there is a LEFT BUNDLE BRANCH BLOCK.  The ECG criteria for LBBB are:  1) A supraventricular rhythm, 2) A wide QRS, and 3) A negative QRS in Lead V1 and a positive QRS in Leads I and V6.  The QRS duration in this ECG is 136 ms.

There are generally two fascicles (branches) in the left bundle branch, and one main fascicle in the right bundle branch.  So, a LBBB represents a “bi-fascicular block”.  That means that A-V conduction is proceeding down only one fascicle (the right bundle branch).  In that fascicle, there is an “intermittent” block.  When the RBB is not blocked, we see a QRS.  When it is blocked, we see none.  This is then termed an “intermittent tri-fascicular block” – otherwise known as SECOND-DEGREE AV BLOCK, TYPE II.  Type II blocks nearly always have a wide QRS due to the underlying bundle branch pathology.  You may see RBBB, LBBB, or RBBB with left anterior fascicular block (hemiblock).  Very rarely, the combination might include left posterior hemiblock.  The intermittent block in the “healthiest” fascicle(s) is what makes this a second-degree block, and not a complete heart block (third-degree AVB).

The clinical implications of this block are that the heart is operating on only one fascicle, and that fascicle is showing obvious signs of distress.  A third-degree AVB could be imminent.  In addition, LBBB causes a wide QRS, which decreases cardiac output.  Second-degree, Type II AVBs can result in very slow rates, and sometimes cause more hemodynamic instability that some third-degree AV blocks.

This patient was scheduled for pacemaker implantation instead of the originally-scheduled surgery. 

Dawn's picture

AV Block With Changing PR Intervals

Just like other subjects we are taught in school, ECG interpretation is usually taught in a very basic, simplistic way.  As we add to our knowledge, we are able to determine the mechanisms of more complex rhythms. 

When I took my first basic ECG rhythm monitoring course, I memorized all the “rules”, and at the end of the course, I thought I could read ANY strip correctly.  Then, in real life, I found that some rhythms can’t be interpreted from one lead, or even from one 12-lead ECG. 

This strip offers advanced readers to challenge themselves, and it offers teachers a chance to show students an “exception to the rules” if it is appropriate for those students.  We all learn the classification of second-degree AV blocks:  Both Type I and Type II show an underlying sinus rhythm with some P waves conducted and some not.  Type I has progressively prolonging PR intervals until a P wave is non-conducted.  The cycle restarts after the dropped QRS.  Type II has PR intervals that are all the same, and may be prolonged or normal. 

In this ECG, you will be able to “march out” a normal sinus rhythm at a rate of 80 bpm.  The P waves are marked with small dots at the bottom.  Two of every three P waves are followed by QRS complexes.  Is it Type I?  No – the PR intervals are not prolonging.  Is it Type II?  The PR intervals are not the same!  What is happening? 

There is also left bundle branch block, which is a sub-Hisian block.  Blocks occurring in the intraventricular conduction system include bundle branch blocks, second-degree AVB Type II,  and third-degree AVB with ventricular escape.  This group of blocks tends to be more threatening than the blocks that occur in the AV node (second-degree type I and third-degree with junctional escape). 

Pages

All our content is FREE & COPYRIGHT FREE for non-commercial use

Please be courteous and leave any watermark or author attribution on content you reproduce.